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Abstract

Two-dimensional, double diffusion, natural convection in a rectangular enclosure filled with binary fluid saturating porous media is
investigated numerically. Multiple motions are driven by the external temperature and concentration differences imposed across horizon-
tal walls with the simultaneous presence of discrete heat and contaminant sources. The general Brinkman-extended Darcy model is
adopted to formulate the fluid flow in the cavity. The fluid, heat and moisture transport through the isotropic porous layer are analyzed
using the streamlines, heatlines and masslines, and the heat and mass transfer potentials are also explained by the variations of overall
Nusselt and Sherwood numbers. The numerical simulations presented here span a wide range of the main parameters (thermal Rayleigh
numbers, strip pitches and Darcy number) in the domain of destabilizing solutal buoyancy forces. It is shown that the heat and mass
transfer potential can be promoted or inhibited, depending strongly on the permeability of porous medium, the strip pitch, the thermal

and solutal Rayleigh numbers.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During the past few decades, innumerable theoretical,
numerical and experimental studies have dealt with natural
convection confined to enclosures completely filled by a
fluid or a porous medium. Most recently, the trend in the
research community has shifted to the examination of
simultaneous heat and mass transfer or double-diffusion
convection in enclosures. As expected, this situation is gen-
erally more complex than those when each phenomenon
acts alone. Double-diffusive natural convection in enclo-
sures has been encountered in many engineering fields, such
as oceanography, astrophysics, geology, biology, and
chemical processes etc. This fact is amply reflected by the
size of the research effort dedicated to this topic [1-3].
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The phenomenon of double-diffusive natural convection
in an enclosure is as varied as the thermal and solutal
boundary conditions, geometry and orientation of the
enclosure. Judging from the number of potential engineer-
ing applications, the enclosure phenomena can be orga-
nized into three classes: (1) double diffusion in an
horizontal layer with vertical temperature and concentra-
tion gradients [4-6]; (2) thermosolutal natural convection
due to horizontal temperature and concentration gradients
in vertical enclosures [5,7-19]; (3) sideways heating of an
initially stratified fluid layer [20-22]. Their attentions have
been given to the convective fluid [4,5,9-12,14,17-22] or
porous layers [6-8,13,15,16] that are induced or destabi-
lized by uniform heat (mass) fluxes or uniform higher tem-
perature (concentration).

Other engineering systems, however, may be character-
ized by double-diffusive behavior driven by thermal and
solutal buoyancies induced by discrete heat and mass
sources. For example, possible non-uniformities in the
release of buoyant element due to heat exchanger leakage
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Nomenclature

Ar cavity aspect ratio (L/H)
D solutal diffusivity
Da Darcy number

g gravitational acceleration

H height of the enclosure

k thermal conductivity

K permeability

L width of the enclosure

Le Lewis number

Ly pitch of the discrete segments
N buoyancy ratio (BAs/p.Af)
Nu overall Nusselt number

P Dimensionless pressure

Pr Prandtl number

Ra Rayleigh number

S dimensionless concentration

Sc Schmidt number

Sh overall Sherwood number

T dimensionless temperature

U, dimensionless velocity components in X, Y
X, dimensionless Cartesian coordinates

~

Greek symbols

o thermal diffusivity

p volumetric expansion coefficient
A difference value

v kinematic viscosity of fluid

0 density

T dimensionless time

L4 dimensionless stream function
(2] dimensionless heat function
Q dimensionless mass function
Subscripts

h higher value

1 lower value

max, min maximum, minimum

S solutal

t thermal

Superscript

dimensional variable

in salt-gradient solar ponds [23], or crystal growth control
[24] and in heat and moisture transport in building ele-
ments [25-29], also warrant the investigation of double-dif-
fusive convection induced by discrete heat and mass
sources. To the best knowledge of the authors, no attention
has been paid to the double-diffusive natural convection in
closed porous enclosures with discrete heat and mass
sources, though it has been received considerable studies
in single-component natural convection [30-38]. It should
be mentioned that Bergman and Ungan [24] have numeri-
cally and experimentally reported the transient evolution of
convective flow induced by bottom heating with a heated
strip placed beneath a salt-stratified layer with a top free
surface, imposing the destabilizing temperature and stabi-
lizing salinity gradients. Chen et al. [25] have numerically
studied the steady mixed double-diffusive convection in a
slot-ventilated enclosure subject to localized heating and
salting. Zhao et al. [26-28] have investigated the double-
diffusive natural convection induced by discrete thermosol-
utal sources in a porous/fluid enclosure. Liu et al. [29] have
studied the thermosolutal convection driven by conditions
of uniform heat and mass fluxes imposed along the portion
of the two vertical walls.

The present work describes numerical results of steady-
state double-diffusive natural convection induced by
bottom heating and polluting with two finite thermal and
pollutant strips symmetrically placed beneath a porous
layer saturated with moist air. This situation can be found
in many fields, such as grain storage, migration of moisture
contained in fibrous insulation, floor heating and humidify-
ing [7,8,13,15,16,26-29]. The porous medium considered

here is modeled according to the Darcy—Brinkman formu-
lation, which accounts for friction due to macroscopic
shear and is more appropriated to describe the fluid flow
in the porous matrix [15,16,27]. The effects of buoyancy
ratio, thermal Rayleigh number, pitches of heat and pollu-
tant sources and the permeability of the porous medium on
the multiple steady convective solutions will also be illus-
trated and analyzed in this paper. Additionally, the fluid,
heat and mass transport structures are presented by
streamlines, heatlines and masslines, respectively, which
are useful in investigating the convective heat and mass
transfer [3,9,11-14,19,25-29,39].

2. Problem formulation
2.1. Physical model and assumptions

The physical domain under investigation is a two-
dimensional fluid-saturated Darcy—Brinkman porous
enclosure (see Fig. 1). The rectangular enclosure is of width
L and height H (aspect ratio Ar = L/H), and the Cartesian
coordinates (x,y), with the corresponding velocity compo-
nents (u,v), are indicated herein. It is assumed that the third
dimension of the enclosure is large enough so that the fluid,
heat and mass transports are two-dimensional. Gravity
acts in the negative y-direction. The discrete heat and pol-
lutant sources are separately located on the left-half and
right-half bottom, being of length L, and L, respectively.
The pitch between the right edge of the heat strip and the
left edge of the mass strip is L. They are located symmet-
rically with central line (x = 0) of the horizontal enclosure.
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Fig. 1. Geometry and boundary conditions for the studied porous
enclosure with discrete heat and contaminant sources.

The horizontal top wall of the enclosure is maintained at
lower temperature #. Vertical walls and the bottom side
excluding the discrete strips are assumed to be impermeable
and perfect thermal insulations. Initially, the stationary
fluid mixture and the confining walls are assumed to be
at uniform temperature ¢ and the same uniform concentra-
tion s.. At t* =0, the temperature at the surface of the
heated strip is suddenly raised to a higher-level #, and
maintained at this level thereafter. Meanwhile, the concen-
tration of the fluid at the surface of the pollutant strip or at
the top wall, depending on the stabilizing or destabilizing
solutal buoyancy forces, is hypothesized to be abruptly ele-
vated to a higher value s,. Accordingly, vertical tempera-
ture and concentration gradients are imposed on the
fluid, and the flow is then initiated and evolves under the
action of the combined driving forces due to these
gradients.

The fluid saturating the porous medium is a perfect two-
component mixture, and this mixture is taken as a Newto-
nian—Fourier—Fick fluid. The porous matrix is assumed to
be uniform and in local thermal and compositional equilib-
rium with the saturating fluid. Thermophysical properties
are supposed constant. The flow is assumed to be laminar
and incompressible. Viscous dissipation and porous med-
ium inertia are not considered, and the Soret and Dufour
effects are neglected. Density of the saturated fluid mixture
is assumed to be uniform over all the enclosure, exception
made to the buoyancy term, in which it is taken as a func-
tion of both the temperature ¢ and concentration s through
the Boussinesq approximation,

p=pll =Bt — 1) = Bi(s —s)] (1)

where p; is the fluid density at temperature #; and concen-
tration s;, and f5; and fs are the thermal and concentration
expansion coefficients, respectively. The above simplifica-
tion is appropriate when both the components in the mix-
ture have comparable molecular weights or when the
mixture is dilute. In this study, for moist air at room con-

ditions, B, can assume the value near 0.0034 K ! and f can
assume values between 0.61 kg/kg (for pure dry air) and
0.38 kg/kg (for pure water vapor) [3,14].

It remains to be noted that, in the present work, the
thermal levels are small and similar enough so that thermal
radiation heat transfer between the walls is negligible, and
the fluid is assumed to be radiatively non-participating
[13,14]. Additionally, there are problems not considered
related with transition to turbulence, and the condensation
phenomenon when the medium that fills the enclosure is a
gaseous mixture with a condensable component.

2.2. Model equations

By employing the aforementioned assumptions into the
macroscopic conservation equations of mass, momentum,
energy and species, a set of dimensionless governing equa-
tions is expressed as follows:
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Non-dimensionalization of the governing equations has
been achieved by defining the following dimensionless
variables:

(X, Y) = (e, p)/H, (U, V)= (u,0)/Uo,

1 =1Uy/H (7a)
P=(p+pey)/lpUg), T=(t—1)/A,
S=(s—s1)/As (7b)

where H, Uy = (gBAtH)"?, H/Uy, At = (1, — 1;) and As =
(sn, — s1) are used as characteristic scales for length, veloc-
ity, time, temperature and concentration, respectively.
These scales can maintain balance of convection and diffu-
sion terms [40,41]. Foregoing equations introduce the
dimensionless parameters,

Pr=v/a, Da=K/H* Ra, = gBAtH’/va,
Le=0u/D, N = fAs/p.At (8)
where v is the kinematics viscosity of the fluid, « and D,

respectively are the thermal and molecular diffusivities of
the combined fluid plus solid porous matrix medium, K is
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the permeability of the porous medium, and g is the accel-
eration due to gravity. Since the particle Reynolds number
is considered being less than unity in this work, the Forch-
heimer inertia term has been dropped from the momentum
Egs. (3) and (4) compared with the Darcy and Brinkman
terms. The porosity of the porous layer, the ratios between
effective viscosity and fluid viscosity, and the ratios of the
thermophysical properties of the porous medium and of
the fluid, have been implicitly set to unity [15,16,27,30].
Schmidt number can also be introduced as, Sc=v/D =
PrLe.

2.3. Boundary conditions

Non-slip boundary conditions are imposed over the
walls of the enclosure,

U=7=0 9)

With such boundary conditions, it is assumed that the pol-
lutant mass flow through the vertical walls is small enough
in order to validate the use of zero normal velocity values
at such walls. At the impermeable and perfect thermal insu-
lated vertical walls,

or oS
S a 0, X=-4r/2 and X =+44r/2,
0<Y<l (10)

The same conditions are imposed on the bottom except the
surface of the heat and contaminant sources, where the fol-
lowing boundary conditions are imposed:

oS
T:l _—
and % 0,

Y=0 (11)

—(2L+ L) /2H < X < —L/2H,

Streamlines

Isotherms

——

Iso-concentrations

Masslines

(b)N=10

(aN=0

(c)N=10

Fig. 2. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for Ra, = 10,
Da=10? and L, = 0.75H. (a) N =0 with upward mass transfer, Nu = 2.575, Sh=2.452, ¥ .« = 0.000, ¥ ;n = —0.071, O ax = 0.001, O, = —4.935,
Qunax = 0.001, and Qi = —4.558; (b) N=10 with destabilizing solutal buoyancy effect, Nu=4.878, Sh=3.680, Yy.x =0.227, ¥nin = —0.002,
Onax = 11.756, Onin = —4.875, Quax =06.044, and Qi = —3.679; (c) N =10 with stabilizing solutal buoyancy effect, Nu=1.563, Sh = —1.256,
Y inax = 0.005, ¥ nin = —0.020, Ox = 0.001, O iy = —3.973, Quax = 1.589, and Q,;, = —2.038.
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or

S=1and = =0, Ly/2H <X < (2L +Ly)/2H,

Y = 0 (upward mass transfer) (12a)
oT

S=0and 5o =0, Ly/2H <X < (2Ls+Ly)/21,

Y =0 (downward mass transfer) (12b)
Over the top wall,
T=0, S=0, —Ar/2<X <+4r/2,

Y =1 (upward mass transfer) (13a)
T=0, S=1, —-4r/2<X < +4r/2,

Y =1 (downward mass transfer) (13b)

The foregoing prescription of 7" and S over the horizontal
walls (Egs. (11), (12a) and (13a)) can lead to a situation of
destabilizing thermal and solutal buoyancy effects. How-

ever, the boundary conditions (Egs. (11), (12b) and (13b))
lead to a situation of opposing heat and moisture gradients,
which weakens the net buoyancy.

2.4. Convective transport and visualization

For each time step the dimensionless heat and mass
transports for a given horizontal line (Y = Y,) of the net-
work are determined by means of the expression [19],

dr

2 or
Nu—/i < RalPrVT—W>dX,

2
+Ar

Sh = /T (Le«/RatPrl/S - 2—‘;> dx (14)

The global Nusselt and Sherwood numbers are obtained
by taking the average of all the lines. The calculations
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Fig. 3. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for Ra, = 10,
Da=10%, Ls=0.75H, and with destabilizing solutal buoyancy effect. (a) Nu=2.458, Sh=2.260, ¥n.x=0.068, ¥pi,=—0.060, O, =3.366,
Omin = —3.641, Qu.x=1.058, and Q. =—4.654; (b) Nu=2.618, Sh=3.203, Pp.x=0.000, ¥pin=—0.124, Onax =0.001, O, = —6.264,
Quax =0.002, and Quin = —8.138; (¢) Nu=3.440, Sh=2.502, Wmax=0.120, Ppmin =0.000, Opax =06.253, Opmin = —3.441, Quax =2.869, and

Opin = —2.502.
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are continued until a result independent of time was
obtained.

In order to clearly exhibit the fluid, heat and contami-
nant transport characteristics of double-diffusive natural
convection, a recently developed visualization technique
of convective transport paths is employed [3,9,11-14,
19,25-29,39]. In terms of above continuity, energy, and
concentration conservation equations, the dimensionless
stream function ¥, heat function @, and mass function Q
are defined respectively as follows [19]:

Stream function

Nu (Sh)

15 1 1 1 1 )
0

(a) Destabilizing solutal buoyancy effect

14 Sh

(b) Stabilizing solutal buoyancy effect

Fig. 4. The effect of buoyancy ratio on the overall Nusselt (Nu) and
Sherwood (Sh) numbers for Ra, = 10°, Da=10? and L = 0.75H, with
boundary conditions of destabilizing solutal flow (a) and those of
stabilizing solutal flow (b).

oY oY
v Y T v (15)
Heat function
00 orT 00 or
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Mass function
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where the following relations are made for
dimensionalization:

y e Q
V=—, 6=— Q= 18

po’ kAt’ pDAs (18)

The corresponding contour lines, streamlines, heatlines and
masslines, are representative of the transport pathlines of
fluid, heat and contaminant. Once known the flow, temper-
ature and concentration fields, the stream function, heat
function and mass function can be obtained using the inte-
gration method [19].

3. Numerical technique and validation

Finite volume method (FVM) is applied to discretize the
governing equations on a staggered grid system [42]. In the
course of discretization, the third-order deferred correction
QUICK scheme [43] and a second order central difference
scheme are respectively implemented for the convection
and diffusion terms. The SIMPLE algorithm was chosen
to numerically solve the governing differential equations
in their primitive form [41,42]. To obtain better conver-
gence properties, the unsteady terms in these equations
were implicitly treated and hence approximated by back-
ward differencing. For each time step, the discretized equa-
tions were solved by a line-by-line procedure, combining
the tri-diagonal matrix algorithm (TDMA) and the succes-
sive over-relaxation (SOR) iteration.

Numerical experiments were performed to establish that
the number and the distribution of the control-volumes are
sufficient to resolve the thinnest boundary layer, with more
control volumes concentrated near boundaries and sources.
During the program tests, a systematic grid independence
study was conducted, and then the final grid resolution
of 81 x 41 was selected at the balance between the calcula-
tion accuracy and the speed for 4r = 2. The time interval,
first set at a relatively small value from 107 to 107°
depending on Ra, and N, is successively enlarged.

The convergence criteria are based on maximum errors
in global mass, energy and species imbalances. Conver-
gence was insured when the maximum errors become less
than 10>, The current numerical technique has been very
successfully used and validated in a series of recent papers,
including single-component natural convection [38-41],
conjugate heat transfer [39-41], double-diffusive mixed
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convection [25] and double-diffusive natural convection in
fluid or porous enclosures [19,26-29].

4. Results and discussion

As was already noted above, the problem under investi-
gation is governed by nine non-dimensional groups: the
thermal Rayleigh number Ra;, Prandtl number Pr, buoy-
ancy ratio N, Lewis number Le, Darcy number Da, aspect
ratio Ar, size of heat source L,/H, size of contaminant
source LJ/H, and the pitch between discrete sources
L/H. It is a formidable task to perform computations cov-
ering wide ranges of all these parameters. Instead, enclo-
sure aspect ratio and sizes of both sources are maintained
at Ar=2 and L/H = LJ/H = 0.25, respectively. Simulta-
neously, results were obtained for a given binary gas mix-
ture with Pr and Sc fixed at 0.7 and 0.6, respectively,

thus giving Le =~ 0.8 [5,10,12-14,19]. Attention is therefore
focused herein on the effects of the buoyancy ratio N, ther-
mal Rayleigh number Ray, strip pitch L/H, and Darcy
number Da. The Brinkman extended Darcy model has
been used through the study: in the first study, the Da is
fixed at 10? (approaching to the limiting case of pure vis-
cous fluid), then the influence due to Brinkman term due
to increasing viscous forces (Da = 107%-10%) is analyzed.
The stream function will be used to identify the sense
and magnitude of the fluid circulation. The coordinates
are chosen such that counter-clockwise (or clockwise)
movement will be associated with positive (or negative)
Y. Similar relations are set for heat flow and heat function
0O, and for solute flow and mass function Q. The computed
streamlines, isotherms, iso-concentrations, heatlines and
masslines are plotted in the following figures. The intervals
of these isopleths are A¢ = (Qmax — Pmin)/16, where ¢

Ny

Streamlines

Isotherms

-

— =

Iso-concentrations

Heatlines

Masslines

(@) Ra, = 10°

(b) Ra, = 10"

(¢) Ra, = 10°

Fig. 5. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for
L=0.75H, Da=10%>, N=1 with upward mass transfer. (a) Ra,= 103, Nu=0.890, Sh=0.889, ¥, ..=0.003, ¥o,=—0.003, Oy =0.000,
Omin = —0.890, Qax = 0.000, and Qpin = —0.889; (b) Ra = 10*, Nu = 1.776, Sh = 1.673, Yiax = 0.091, ¥rin = —0.085, O pax = 0.000, Oy = —3.111,
Qmax = 1.182, and Quy, = —1.674; (¢) Ray = 10°, Nu = 5.484, Sh=4.979, ¥ pax = 0.104, Yoin = —0.103, Opmay = 16.716, Opin = —14.552, Qe = 6.796,

and Qi = —18.144.
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stands for ¥, T, S, © or Q. Discrete sources on the floor are
indicated by heavy lines.

4.1. Effect of buoyancy ratio

The thermal Rayleigh number, Darcy number and pitch
of strips are maintained at Ra,=10°, Da = 10" and
L, =0.75H, respectively. Typical flow charts will be pre-
sented when the temperature gradient is destabilizing and
when the concentration gradient is either stabilizing or
destabilizing.

For N = 0 with upward mass transfer, the flow is driven
solely by the vertical destabilizing thermal gradient. Upon
starting the numerical code with the rest state
¥ = T =S =0 as initial conditions, a unicellular clockwise
circulation develops in Fig. 2a. Isotherms and iso-concen-
trations show steeper gradients near the heating and pollut-

F.-Y. Zhao et al. | International Journal of Heat and Mass Transfer 51 (2008) 28892904

ing elements respectively, and the concentration filed that
rides on the heat-transfer-driven flow as depicted in
Fig. 2 depends to a significant degree on the Lewis number.
With the Lewis number less than unity, the mass transfer
process is diffusion dominated. The thermal boundary
layer is expected to be thinner than the hydrodynamic
boundary layer, and the hydrodynamic boundary layer is
either comparable to or thinner than the solutal boundary
layer. The net result is that the temperature field in the core
of the cavity tends to be uniform, while the concentration is
linearly stratified in the right-half zone. However, the mass-
lines take the similar pattern of the heatlines due to the
comparative thermal and solutal diffusivities.

When N increases to 10, the flow is driven mainly by the
destabilizing vertical compositional gradient. As observed
in Fig. 2b, both thermal and solutal buoyancy effects are
augmenting each other and thus they simultaneously accel-

Streamlines

7T O\

Isotherms

h

Iso-concentrations

Heatlines

Masslines

(@) Ra,=2x 10*

(b) Ra, = 2x 10*

(c) Ra, = 2x 10*

Fig. 6. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for
Li=0.75H, Da=10? and N =1 with upward mass transfer. (a) Nu = 0.915, Sh=0.904, ¥ n.x = 0.004, ¥ in = —0.004, O ax = 0.028, Opin = —0.890,
Qmax = 0.010, and Qi = —0.889; (b) Nu=2.120, Sh=1.954, ¥yux=0.097, ¥nin=—0.097, Onax =2.041, Opi, = —3.168, Q. = 0.836, and
Quin = —3.474; (¢) Nu=2.262, Sh=1.921, ¥ ax = 0.117, ¥ 1in = 0.000, O a0 = 2.259, Opin = —2.263, Qax = 1.166, and Q,;, = —1.921.
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erate the flow counter-clockwise. The intensity of the eddy
flow, measured by the absolute of the extreme value of ¥,
has been enhanced three times higher than that of heat-dri-
ven flow limit. Temperature and concentration fields in the
core region are observed to be uniform. The isotherms and
iso-concentration lines indicate that both the thermal and
concentration fields have boundary layer character, their
thickness approximately equal to that of the hydrodynamic
boundary layer. Heatlines and masslines have the similar
pattern of counter-clockwise heat or mass flows.
Whereas, as the boundary conditions of downward mass
transfer (Egs. (12b) and (13b)) are imposed and buoyancy
ratio N is approaching value of infinite, a strong stabilizing
vertical solutal gradient prevails within the gaseous layer
for which the fluid within the layer is expected to remain
at rest. As N equaling 10, illustrated in Fig. 2c, there is a
competition between thermal and solutal buoyancy forces.
The rotational motion, indicated by the streamlines, is
induced by the corresponding non-uniform destabilizing
temperature distributions. The flow pattern is observed to
be multi-cellular with a large clockwise rotating cell and
two counter-clockwise rotating cells, one beginning at the
right boundary separating the pollutant strip and imperme-
able section of the bottom surface, the other occurring in
the overlying the solute-stratified fluid and induced by
shear stresses due to convection in the main cell. The iso-
therms are skewed towards the heating element and show
unstable stratification in the upper region, while the iso-
concentrations show stable stratification in the entire
region. Stabilizing density gradients develop at the inter-
face separating the convecting fluid from the solute-strati-
fied fluid and inhibit further upward propagation of
convective conditions. As a consequence, heat conduction
and solutal diffusion are dominant in the upper region,
which can be demonstrated by the heatlines and masslines
parallel penetrating from fluid to the top sink.
Aforementioned flow charts are all obtained using the
rest state, ¥ = T=S =0 as initial conditions. However,
multiple steady solutions are possible when different initial
conditions are used. For a classical Bénard situation
[5,6,33], the resulting cell(s) can rotate indifferently clock-
wise or counter-clockwise, giving rise to two different con-
vection states. Thus, using rest state as initial values for
Bénard convection, the direction of rotation of the cell is
not imposed by the physics of the problem but is induced
by the round-off errors generated in the numerical compu-
tations. In contrast, when the porous enclosure is partially
heated and contaminated by the bottom, the existence of
several cells and the direction of their rotation seem to be
imposed a priori, the fluid being ascendant above the ther-
mal and solutal elements with positive volumetric expan-
sion coefficients. An example of this flow configuration is
given in Fig. 3a with N = 1. These flows, which develop
from rest as initial conditions, can be referred to ‘natural’
flow. The flow field in this horizontal enclosure with
upward transfer consists of a series of roll cells, each coun-
ter-rotating in the opposite direction to its neighbors. Ther-

mal convection with two counter-rotating cells in the left-
half region is expected to initiate at the right edge of the
heated section, while solutal convection including with
the other two cells in the right-half region initiate at the left
edge of the pollutant segment. However, it is also possible
to obtain a convective pattern such that the fluid motion
above the thermal or solutal element is not ascendant but
rather moves down toward it. Such reversed circulations,
called ‘anti-natural’ solute and heat flows, are illustrated
in Fig. 3b and c, respectively. Correspondingly, solute
(heat) takes more paths to reach the sink, as illuminated
by the masslines and heatlines in Fig. 3b and ¢, respec-
tively. Close scrutiny of temperature fields in Fig. 3a—c
shows that, the ascending streams are hotter than descend-
ing ones, providing the driving force in the respective direc-
tions of motion. Similar observations can be found in
concentration fields.

The effect of buoyancy ratio N on the overall Nusselt
and Sherwood numbers is depicted in Fig. 4 with upward
mass transfer and downward mass transfer, respectively.
In general, heat and mass transfer rates of destabilizing sol-
utal gradients (N > 0 in Fig. 4a) are greater than that of
stabilizing solutal gradients (N > 0 in Fig. 4b). For the lat-
ter case, shown in Fig. 4b, the overall Nusselt number and
Sherwood number approach 1.5 and —1.2, respectively,
which belongs to the solutal-dominated opposing flow, giv-
ing rise to a weak multi-cellular flow as illustrated in
Fig. 2c. Gradually decreasing N from 10 to lower values,
the top cell shown in Fig. 2¢ would vanish (N = 2.2), and
the flow intensity increases accordingly. As illustrated in
Fig. 4b, the heat and mass transfer rates also increase with
the decreasing N.

In terms of destabilizing thermal and solutal buoyancy
effects (Fig. 4a), it can be observed that the Sherwood num-
ber unexpectedly exceeds the value of the Nusselt number

Nu (Sh)

10° 10 10° 10°
thermal Rayleigh number

Fig. 7. The effect of thermal Rayleigh number Ra, on the overall Nusselt
and Sherwood numbers for N =1, Da = 10? and L = 0.75H.
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greatly as the buoyancy ratio is continuing increased from
zero. Masslines pattern in Fig. 3b shows that the low-con-
centration fluid sweeps along the bottom pollutant segment
and it continues to be soluted for a longer distance, thus
enhancing the mass transfer potential. The thermal-domi-
nated flow, exemplified by the flow pattern of Fig. 3b,
could be sustained for 0.0 < N < 3.1. On the other hand,
when decreasing N from 10, the solutal-dominated aiding
flow identified in Fig. 2b can be maintained to N =0.2.
The overall heat transfer rate is observed to remain higher
than the mass transfer rate. Observing from Figs. 2b and
3c, heatlines pattern illuminates that the cold fluid sweeps
the heated strip longer, and greatly increasing the heat
transfer potential. In addition to the aforementioned two
different solutions, a third possible solution, similar to that
illustrated in Fig. 3a can be maintained in the range of
0.6 < N < 1.4 as presented in Fig. 4a. Heatlines and mass-

lines in Fig. 3a illuminate that the ‘natural’ heat and solute
flows greatly shorten the heat and mass transfer interfaces,
thus decreasing heat and mass transfer rates together.

4.2. Effect of thermal Rayleigh number

Fig. 5 presents steady-state contour maps for various
values of Ra, for L =0.75H, N=1 and Da = 10°. The
condition N =1 here means that the flow is dominated
by equal but destabilizing effects of both thermal and com-
positional buoyancies.

As shown in Fig. 5a, Ra, is low (10%), two pairs of coun-
ter-rotating cells develop near both symmetry planes of the
discrete sources, one is induced by thermal buoyancy, the
other by solutal force. The isotherms and iso-concentra-
tions uniformly and annularly cluster around the heat
source and the pollutant source, respectively. Heat and sol-

@ ®
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Iso-concentrations
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Heatlines

Masslines

(a) L, =0.00H

(b) Lis = 0.50H

(c) Ly =1.50H

Fig. 8. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for Ra, = 10,
Da=10? and N=1 with upward mass transfer. (a) L =0, Nu=2.664, Sh=2.491, ¥ .x =0.089, ¥ in = —0.090, O =2.738, Onin = —5.131,
Quax = 1.871, and Qi = —4.660; (b) L= 0.5H,Nu=2.990, Sh=2.754, ¥pnax = 0.098, Yin = —0.101, Onax =4.142, Opin = —5.746, Qax = 2.000,
and Quin = —6.143; (¢) Ls=15H, Nu=2.012, Sh=1874, ¥pux=0.076, ¥pin =—0.067, Omax =0.000, Omin=—4.511, Qun.x= 2.234, and

Opin = —1.876.



F.-Y. Zhao et al. | International Journal of Heat and Mass Transfer 51 (2008) 2889-2904 2899

ute are also transported from source to sink paralleling to
the vertical wall. As Ra, is increased to 10%, streamlines
consist of only two cells (Fig. 5b), which are counter-rotat-
ing and subject to destabilizing thermal and solutal forces,
respectively. From the values of Y. and Y., it is
observed that the convection strength of this bi-cellular
convection is much higher than that of quad-cellular flow
pattern. Due to the strength of convection, the existence
of a temperature (concentration) gradient reversal is
observed to occur in the core of the left (right) half region.
Heatlines and masslines illuminate that heat and solute are
still transported in the shortcut path. As Ra, equaling 10°,
shown in Fig. 3a, the streamlines consist of four counter-
rotating cells again. The two cells immediately adjacent
to the walls are larger than those in the middle. The inten-
sity of the flow in Fig. 3a is decreased when comparing with
that of Ra, = 10*, it is however about 20 times stronger

than that of Ra, = 10° judging from the maximum values
of the respective stream functions. The temperature (con-
centration) field is distorted and stratified most at the loca-
tions where the thermal-driven (solutal-driven) convection
was moving up or down. The effect of increasing thermal
Rayleigh number is to produce a plume-like flow above
the heated and contaminated region and an adverse strati-
fication in the respective core. When Ra, is increased to 10,
as illustrated in Fig. Sc, the temperature (concentration)
field in the left (right) half core is noticed to be almost uni-
form. Again, the flow consists of two cells, with the
enhanced strength of the flow eddy and the reversal rota-
tions. As a result, the hot and high-concentration fluid
effectively dips the top sink, and the heat and mass transfer
rates are enhanced greatly.

Apart from the foregoing natural solutions (using rest
state as initial conditions), other flow states can be

Streamlines
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%
g
:

Iso-concentrations
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Heatlines

!

Masslines

(a) Ly=0.5H

(b) Ls=0.5H

(c) Ly=0.5H

Fig. 9. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for
L =0.50H, Ra,=10°, Da=10% and N =1 with upward mass transfer, and (a) Nu = 3.251, Sh=3.070, ¥ nax = 0.111, Vi, = —0.102, O 0 = 0.009,

Omin = —10.212, Quae=6.001, and Quin = —3.082; (b) Nu=2815, Sh=23.255, ¥pu=0.000, ¥pmin=—0.128, Opax =0.004, Opin=—7.149,
Qunax = 0.005, and Quin = —8.338; (c) Nu=3.468, Sh=2.660, Wmux=0.122, Wpin=0.000, Opmax=6.186, Omin=—3.477, Quux=3.231, and
Ouin = —2.665.
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obtained if different initial conditions were chosen. It is
seen from Fig. 6a—c, three modes of convection are possible
for given values of N, Da, L and Ra, =2 x 10*. The first
solution, Fig. 6a, obtained by using the flow configuration
of Fig. 5a as initial conditions, is observed to be almost
similar to that in Fig. 5a. For the second solution,
Fig. 6b, a flow pattern akin to that of Fig. Sc, is obtained
through gradually decreasing Ra, from 10° to 2 x 10%.
The results indicate that the flow intensity of Fig. 6b
remains strong and it is about 25 times higher than that
of Fig. 6a. For the third solution, Fig. 6¢, the rest state
Y =T =S =0 was used as initial conditions, the solutally
driven unicellular core flow spans now completely the
enclosure. For this situation, ‘anti-natural’ heat flow occurs
and the heat transfer potential thus increases, however, the
mass transfer is decreased when comparing with the second
solution of Fig. 6b. Similar results can be found in Fig. 3c
of Ra, = 10°.

The effects of thermal Rayleigh number on the overall
Nusselt and Sherwood numbers are illustrated in Fig. 7
for L =0.75H, N=1 and Da = 10°>. When Ra, is small
enough, the convective motion is weak such that the heat
and solute transport in diffusion modes, similar to that of
Figs. 5a and 6a. Upon increasing Ra, from 10°, it was
found that this flow regime with the symmetric and
multi-cellular flow structure depicted in Fig. 6a could be
maintained up to approximately 2.5 x 10*. On the con-
trary, upon decreasing Ra, from 10°, the flow regime of
high intensity can be maintained till Ra; is lower than
4.0 x 10*. Furthermore, for 1.2 x 10* < Ra, < 10°, a uni-
cellular flow exemplified by Fig. 6¢ can be maintained such
that Nusselt and Sherwood numbers are enhanced and
inhibited respectively comparing with the foregoing
solutions.

4.3. Effect of the strip pitch

To demonstrate the effect of segment pitch L on the
heat and mass transport structures, thermal Rayleigh num-
ber, Darcy number and the buoyancy ratio are fixed at 10°,
107 and 1.0, respectively. When the thermal and solutal seg-
ments contact each other (L = 0), shown in Fig. 8a, the
upward penetration of convective condition develops from
the rest state. This condition allows formation of two con-
vective rolls in the X-direction with alternating clockwise
and counter-clockwise rotation. The heated fluid takes on
the appearance of a mushroom-shaped thermal rising from
the center of the heated strip. The rising fluid is subse-
quently cooled at the top sink and descends at left and right
top corners, as evidenced by the streamlines and isotherms.
Similar solute flow observations can be found from the iso-
concentrations. As the thermal and solutal segments shift
to left and right sides, respectively (i.e., L increases mono-
tonically), the shear forces established at the bicellular
interface decreases and thus the flow intensity increases
accordingly, which can be demonstrated from the compar-
ison of Fig. 8a and b. However, if the L kept increasing,

multi-cellular flow emerges (as shown in Fig. 3a), and con-
sequently the strength of the convective motions decreases;
the fluid rotation reverse would occur. An example of the
final reverse flow configuration is given in Fig. 8c for the
case of the heated and soluted strips touching the left
and right sides, respectively (L = 1.50H).

Excluding the natural solution disclosed in Fig. 8, it is
still possible to obtain other steady convective patterns.
Fig. 9a— illustrate exemplary three different possible solu-
tions for L, = 0.5H. The following initial conditions have
to be chosen carefully to obtain the multiple solutions. The
first solution, Fig. 9a, obtained by using the flow configu-
ration of Fig. 8c as initial condition, is observed to be
almost similar to that in Fig. 8c. The convective strength,
measured by the absolute of the extremum value of the
stream function, is enhanced about 1.5 times higher than
that in Fig. 8c. Its heat and mass transfer in Fig. 9a is even
vigorous than that in Fig. 8b due to the fact that heat and
solute flows centrally descend from the top to fully sweep
the heat and mass sources, respectively. As the heat-trans-
fer-driven flow and solute-dominated aiding flow illus-
trated in Fig. 2a and b are used as initial conditions, the
second and the third solutions shown in Fig. 9b and c
can be obtained respectively, where the thermal (solutal)
buoyancy is still strong enough to induce a primary cell
circulating clockwise (anti-clockwise) along the entire
enclosure walls. The convection strength of the unicellular
flow pattern is both slightly stronger than that of the bicel-
lular flow in Fig. 9a, while the heat and mass transfer
potentials are inhibited and enhanced respectively in
Fig. 9b, and the heat and mass transfer potentials are

‘ ag o
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Fig. 10. Overall Nusselt and Sherwood numbers as functions of discrete
source pitch L/H for Ra, = 10°, Da = 102, and N = 1 with upward mass
transfer. Filled square, filled circle, open diamond and filled delta symbol
shapes represent the cases corresponding to Fig. 8b and Fig. 9a-c,
respectively.
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enhanced and inhibited respectively in Fig. 9c. Similar
flow patterns and associated causes can be found in
Fig. 3b and c.

The effect of strip pitch L/H on the overall Nusselt and
Sherwood numbers is depicted in Fig. 10 for Ra, = 10°,
Da=10> and N=1 with upward mass transfer. For
L =0, comparing these possible solutions, heat and mass
transfer is minimum when using ¥ =7 =S =0 as initial
values. When the segment pitch L increases, the heat
and mass transfer rates first reach a maximum value at
Ls=0.8H and then appreciably decrease as the L
approaches 1.3H. However, for the case corresponding to
Fig. 9a, the curve of heat and mass transfer almost increase
monotonically with decreasing L from 1.5H to 0.35H, and
then decrease slightly with L decreasing to 0.2H.

For the aforementioned two possible bicellular solutions
indicated by filled square and circle symbols, the curves of

Nusselt and Sherwood numbers almost parallel each other
and the value of overall heat transfer rate is higher than
that of mass transfer due to the Lewis number is lower than
unity. However, for the unicellular flow case corresponding
to Fig. 9b, overall mass transfer rates have been enhanced
greatly such that it is 1.2 times higher than that of heat
transfer at some strip pitches. On the contrary, for the flow
pattern corresponding to Fig. 9c, the heat transfer potential
is strengthened significantly such that it is the highest one
comparing with other possible solutions; while the mass
transfer rate decreases abruptly with increasing pitch L
such that it represents the lowest one for 0.45 < L./
H <1.2. Both unicellular flow cases corresponding to
Fig. 9b and ¢ can be sustained for 0 < Li/H < 1.3, a smal-
ler range of the governing parameter than the natural flow.
Close scrutiny of the curves in Fig. 10 shows that, for L./
H > 1.3, no multiple states are possible.

Isotherms

Iso-concentrations

Masslines

(b) Da=10*

(@) Da=10°

(¢) Da =10

Fig. 11. Contour lines of stream function (top), temperature (top-1), concentration (top-2), heat function (top-3) and mass function (bottom) for
L =0.75H, Ra, = 10°, and N = 10 with upward mass transfer. (a) Nu = 0.889, Sh = 0.889, ¥ ,ux = 0.0001, ¥ in = 0.000, O, = 0.000, O, = —0.889,
Qmax = 0.000,and Qi = —0.889; (b) Nu=1.295, Sh=2.012, ¥pax=0.020, ¥, =0.000, O =0.402, Opin=—-1.295 Qu.x=0.683, and
Quin = —2.012; (¢) Nu=3.597, Sh=3.695, ¥ ax = 0.114, ¥ ;n = —0.002, O 0 = 4.120, O, = —3.589, Qax = 3.548, and Q,;, = —3.777.
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4.4. Effect of Darcy number

In this section, the influence of the porous medium
coarseness (10*6 < Da< 103) on the double diffusion is
investigated. The strip pitch and thermal Rayleigh number
are maintained at 0.75H and 10°, respectively. As Darcy
number increases from 107 to 10® with upward mass
transfer, the effect of the viscous forces accounted for in
the Brinkman term on the flow velocity becomes signifi-
cant. Observing from Fig. 1la, Da=10"° the flow
approaches stationary due to high hydraulic resistance
imposed on the flow by low permeability medium. Heat-
lines and masslines demonstrate that the heat and solute
are transported diffusively. As the Darcy number increases,
porous medium increases viscous dissipation. Therefore, it
is expected that as Da increases, the porous medium
imposed less hydraulic resistance to the flow. As Da
increases to 107, the flow intensity increases, and conse-
quently the concentration gradients at the walls are greater
when the Brinkman term becomes significant. Continually
increasing the Darcy number to 1072, as shown in Fig. 11c,
the dynamic boundary layer becomes thinner when one
observes the streamline patterns. The isotherms and con-
centration fields also have similar structures presented in
Fig. 2b (Da = 10%), which corresponds to the situation of
fluid limit.

The effect of Darcy number on the overall heat and mass
transfer rates, Nu and Sk are illustrated in Fig. 12 for the
heat-transfer-driven flow (N =0) and the solute-driven
flow (N = 10). As the permeability of the porous medium
Da is increased, the boundary frictional resistance becomes
gradually less important and the fluid circulation within the
enclosure is progressively enhanced. The viscous force

Nu (Sh)
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Fig. 12. Overall heat and mass transfer rates variation with permeability
for different buoyancy ratios with upward mass transfer, L = 0.75H, and
Ra, = 10°.

enhances the velocity at high Darcy numbers. The results
indicate that when Da is large enough, Nu and S/ tend
asymptotically toward constant values that depend on the
solutal Rayleigh numbers (Ras= RaleN). The limit
Da — 0 corresponds to a pure Darcy medium situation
which has been studied recently by Zhao et al. [28] and
Liu et al. [29]. As a result, Nu and Sh are observed to
decrease considerably with decreasing Da toward the pure
diffusion limit. This is expected since, in the limit of Da
approaching to 0, the Brinkman model reduces to Darcy
Law. Indeed, as the Darcy number is decreased, the bound-
ary frictional resistance becomes progressively significant
and adds to the bulk frictional drag induced by the solid
matrix to slow the convection motion. Comparing
Fig. 1la— and Fig. 2b, it is found that the strength of
the overall convective flow becomes weaker as the value
of Da is made smaller.

5. Conclusions

Present study deals with double-diffusive natural con-
vection in a horizontal porous enclosure saturated with
gaseous pollutant (or moist air) of Le ~ 0.8, where discrete
heat and moisture sources are attached to the bottom wall.

The obtained heatlines and masslines, for the combined
heat and mass transfer problem under analysis, are shown
to be a very effective way to visualize the paths followed by
heat and moisture, through the porous layer. Visualization
results thus provide more vigorous means to discuss the
convective heat and mass transfer.

Multiplicity of linearly stable steady-states exists for
supercritical natural convection in the enclosure filled with
sparse porous medium (Da = 10%). The existence of a mul-
tiplicity of steady-state solutions for the present numerical
problem has been demonstrated numerically through the
use of appropriate initial perturbations. In the regime that
both thermal and concentration buoyancy forces are desta-
bilizing, single and multiple cell convections take place,
depending on the buoyancy ratio, thermal Rayleigh num-
ber and strip pitch. Solutal-dominated anti-clockwise flow
(N > 0) can be sustained till N is lower than 0.2. The nat-
ural solution of multiple cells can be maintained at a smal-
ler range of 0.6 <N <1.4. In the destabilizing and equal
thermosolutal buoyant forces regime, for a given value of
N the effects of both Ra, and L on the flow patterns have
been investigated. For intermediate values of 1.2 x 10* <
Ra, < 2.5 x 10*, the existence of three possible solutions
is demonstrated. For lower values of Ra, <4 x 10°, unique
diffusion-dominated flow patterns are observed. The effect
of strip pitch L has been studied for the cases of unicellu-
lar and bicellular circulations. Three solutions, four solu-
tions, and unique solution can be observed respectively
for the ranges of 0 < L/H < 0.2, 0.2<L/H<1.3, and
L./H > 1.3. The associated overall heat and mass transfer
rates are also obtained. It is this multiple transfer behaviors
in the porous enclosure that gives to this gaseous double
diffusion much interest and so high potential to apply in



F.-Y. Zhao et al. | International Journal of Heat and Mass Transfer 51 (2008) 28892904 2903

building components where heat and moisture transfer
simultaneously occurs.

At last, effect of Darcy number on the double-diffusive
convection has also been examined for heat-transfer-driven
flow and solutal-dominated flow. The main contributions
of decreasing the Darcy number are predicted to be a flow
retardation effect and diffuse transport of heat and mass in
the enclosure.
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